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Abstract—In this paper, we propose a multiple-metric learn-
ing algorithm to learn jointly a set of optimal homoge-
nous/heterogeneous metrics in order to fuse the data collected
from multiple sensors for classification. The learned metrics have
the potential to perform better than the conventional Euclidean
metric for classification. Moreover, in the case of heterogenous
sensors, the learned multiple metrics can be quite different, which
are adapted to each type of sensor. By learning the multiple
metrics jointly within a single unified optimization framework,
we can learn better metrics to fuse the multi-sensor data for joint
classification.
Keywords: metric learning, multi-sensor fusion.

I. INTRODUCTION

With advancement in sensor technology, numerous different
kinds of sensors with diverse properties are being designed.
A recent trend is to explore the abundant information from
different sensors of homogenous or heterogeneous nature and
fuse them for high-level decision such as classification. Multi-
sensor fusion has applications ranging from daily life moni-
toring [2], [8], [18] to video surveillance [5], [10], and battle
field monitoring and sensing [15], [18]. The use of multiple
sensors has been shown to improve the robustness of the clas-
sification systems and enhance the reliability of the high-level
decision making [2], [8], [10], [15], [18]. However, a direct
challenge brought by using multiple sensors (heterogeneous or
homogenous) is how to efficiently fuse the high-dimensional
data deluge from these multiple sensors for high-level decision
making (e.g., classification). Li et al. [12] developed a general
linear model unifying several different fusion architectures
and also derived optimal fusion rules under several different
scenarios. In [20], Varshney et al. developed a simultaneous
linear dimension reduction and classifier learning algorithm
for multi-sensor data fusion. In that algorithm, an alternating
minimization scheme is adopted for achieving such a goal.
To fuse the data from multiple sensors, the projected data
for each sensor are concatenated and then used for training
a classifier. Davenport et al. [5] proposed a joint manifold
learning based method for data fusion by concatenating the
data collected from multiple sensors using random projection

as a universal dimensionality reduction scheme. In face of the
increased complexity for parameter estimation in multi-sensor
fusion, Lee et al. [11] developed a computationally efficient
fusion algorithms based on Choleskey factorization.

Among many potential applications, we particularly focus
on classification using multi-sensor fusion in this paper. At the
core of many classification algorithms in pattern recognition is
the notion of “distance”. One of the most widely used methods
is the k-nearest neighbor (KNN) method [4], which labels an
input data sample to be the class with majority vote from its k-
nearest neighbors. This method is non-parametric and is very
effective and efficient for classification. Due to its effectiveness
despite of its simplicity, it can be an effective candidate and
can be easily extended to handle multiple sensors. Distance
based method such as KNN relies on a proper definition
of the distance metric to be most effective for the task at
hand. This may be achieved based on the prior knowledge.
However, in many cases where no such prior knowledge is
available, a simple Euclidean metric is typically used for
distance computation. Obviously, the Euclidean metric can not
capture any of the regularities in the feature space of the data,
thus it is sub-optimal for classification. To improve the per-
formance of distance based classifiers, many algorithms have
been developed to learn a proper metric for the application at
hand in the past [6], [13], [21].

In the presence of multiple potentially heterogeneous sen-
sors, the conventional metric learning method is not appli-
cable due to its nature for single sensor. Although we can
reduce the problem into a single metric learning problem
by forming a long data vector constructed by concatenating
data from all the sensors [20]. This method, however, poses
great challenge to the learning algorithm due to the much
higher dimensionality of the concatenated data vector. Another
challenge brought by the multiple sensors is that how to fuse
the information from all the sensors to improve the accuracy
and reliability of the classification. In this paper, we develop a
Homogenous/Heterogeneous Multi-Metric Learning (HMML)
method to learn a metric set from multi-sensor training data,

978-0-9824438-2-8/11/$26.00 ©2011 IEEE



by exploiting the low-dimensional structures within the high-
dimensional space. The proposed HMML method has compu-
tational advantage over the simple data concatenation method
while it can exploit the correlations among the multiple sensors
during metric learning procedure. Based on the learned metric
set, an energy based classification method is adopted which
uses the learned sensor-specific metrics and naturally fuses
all the information from all the sensors for a single, joint
classification decision.

The rest of this paper is organized as follows. In Section II,
we review briefly some related works on metric learning.
In Section III, we introduce the Heterogeneous Multi-Metric
Learning method and present an efficient algorithm for it.
Extensive experiments using real multi-sensor datasets are
carried out in Section V to verify the effectiveness of the
proposed method. We make some discussions and conclude
the paper in Section VI.

II. METRIC LEARNING: PCA, LDA AND LMNN
We first review briefly some related methods for learning

an optimal metric for a single sensor under different criteria.
We use x to denote a data sample. A family of metrics can be
induced by a linear transformation (feature extraction) operator
P as x̃ = Px followed by using Euclidean metric in the
transformed space. Specifically, the squared distance in the
space after linear transformation using P is calculated as:

d(x̃i, x̃j) = dP(xi,xj)
= ‖Pxi −Pxj‖22 = ‖P(xi − xj)‖22
= (xi − xj)>P>P(xi − xj)

= (xi − xj)>M(xi − xj),

(1)

where M = P>P. Therefore, a linear transformation P can
introduce a Mahalanobis metric M = P>P in the original
space, thus we also denote dP(xi,xj) as dM(xi,xj) according
to the specific parametrization we adopt. In this paper, we
use linear projection model due to its simplicity as well as
its effectiveness. Under this model, the problem of metric
learning for M is equivalent to learning the linear projection
operator P.

The following notations are used in this work. We use
{(xi, yi)}Ni=1 to denote the set of training samples, where
xi ∈ Rd is the i-th data sample while yi ∈ {1, 2, · · · , C}
is its corresponding label. In presence of multiple sensors,
we use

{

({xs
i}

S
s=1, yi)

}N
i=1 to denote the set of training

samples, where each training sample is actually a set {xs
i}

S
s=1

consisting of all the i-th data samples from S different sensors.

A. Principal Component Analysis

One of the most well-known projection method is the
Principal Component Analysis (PCA) method [9] which seeks
a projection matrix P by maximizing the variance after
projection (thus retaining the maximum energy), which can
be achieved via:

P = argmax
P

Tr(P>CP)

s.t. PP> = I,
(2)

where C is the covariance matrix of the data. (2) has closed-
form solution which states that the rows of P are constructed
as the leading eigenvectors of C. PCA captures the low-
dimensional property of the data by seeking the projection
directions keeping most of the variance/energy of all the data
samples from all classes. Therefore, the induced metric M
is a low rank matrix which eliminates the components with
low energies. By learning the projection/metric in this way,
the learned projection/metric is good for reconstruction of the
data, but it is not necessarily effective for classification.

B. Linear Discriminant Analysis

To introduce discriminative power into the projection, the
linear discriminate analysis (LDA) method [14] is used to
obtain discriminative projections by maximizing the between-
class scattering while minimizing the within-class variance.
This can be achieved via:

P = argmax
P

Tr
(

P>CbP

P>CwP

)

s.t. PP> = I,
(3)

where Cb and Cw are between-class and within-class co-
variance matrix respectively. The projection matrix P can be
obtained as the leading eigenvectors of C−1

w Cb (assuming Cw

is invertible). By incorporating the label information from each
sample into the optimization, the learned metric M is better
suited for discrimination. Both PCA and LDA can be viewed
under a unified framework called Graph Embedding [23],
which can be applied with eigen-analysis with different con-
figurations of intrinsic graphs and penalty graphs to generate
different projection matrix P, thus inducing metrics with
different properties.

C. Large-Margin Nearest Neighbor Metric Learning

Apart from the eigen-analysis based methods, another line
of research for metric learning is via convex optimization,
typically formulated as a semi-definite programming (SDP)
problem [6], [13], [21]. A representative example is the Large
Margin Nearest Neighbor (LMNN) method [21] which will be
briefly reviewed in the sequel. LMNN method tries to learn
an optimal metric specifically for KNN classifier. The basic
idea is to learn a metric under which the k nearest neighbors
for a training sample are samples belonging to the same class
as the test sample. LMNN method relies on two intuitions to
learn such a metric: (1) each training sample should have the
same label as its k nearest neighbors; (2) training samples with
different labels should be far from each other. To formulate the
above intuitions formally, Weinberger et al. [21] introduced
the following two energy terms:

Epull(P) =
∑

i,j i

‖P(xi − xj)‖2, (4)

Epush(P) =
∑

i,j i

∑

l

(1− yil)
[

1 + ‖P(xi − xj)‖2

− ‖P(xi − xl)‖2
]

+
,

(5)



where i indexing the training samples and j  i denotes the
set of ‘target’ neighbors of xi, i.e., the k nearest samples with
the same label as xi. yil ∈ {0, 1} is a binary number indicating
whether xi and xl are of the same class. [·]+ = max(·, 0) is a
hinge loss. The samples contributing to the energy Epush(P)
are termed as ‘impostors’, which are in fact those samples
within the radius of target samples but belong to classes
different from the target class.

Epull(P) is the energy function giving large energy to the
large distances of the KNN samples belonging to the same
class (target samples) while Epush(P) is the energy function
quantifying the energy between samples from different classes
(impostors), which gives large energy to the small distance
KNN samples from a different class. To learn a metric under
which the target samples are near to each other while the
impostors are far from each other, the following total energy
was proposed by Weinberger et al. in [21]:

E(P) = (1− λ)Epull(P) + λEpush(P), (6)

where 0 ≤ λ ≤ 1 is the parameter balancing the two terms. In
practice, we set λ = 0.5 which gives good results. This loss
function is not convex, therefore, in [21] they reformulated the
original problem into a SDP problem as follows:

M = argmin
M

(1− λ)
∑

i,j i

(xi − xj)>M(xi − xj)

+ λ
∑

i,j i

∑

l

(1− yil)εijl

s.t. (xi − xl)>M(xi − xl)− (xi − xj)>M(xi − xj) ≥ 1− εijl

εijl ≥ 0, M � 0,

where M = PP>. The set of target samples in LMNN can
be initialized with Euclidean metric and be fixed during the
learning process [21]. Extension of LMNN to learning multiple
local metrics has been made in [22] by learning a specific
metric within a local cluster of features. Very recently, LMNN
has been generalized into multi-task setting, where the multiple
tasks for metric learning are coupled by a ‘common’ metric
shared by all the tasks and an additive ‘innovative’ metric that
is specific for each task [17].

III. HETEROGENEOUS MULTI-METRIC LEARNING BASED

MULTI-SENSOR FUSION FOR CLASSIFICATION

In this section, we will develop the Heterogeneous Multi-
Metric Learning (HMML) method for multi-sensor fusion
based classification. Similar to the single sensor metric learn-
ing case, we develop our HMML method for multi-sensor data
based on two similar intuitions as follows: (1) each training
sample should have the same label as its k nearest neighbor in
the full feature space; (2) training samples with different labels
should be far from each other in the full feature space. Given
N training samples from S potentially heterogeneous sensors
{

({xs
i }Ss=1, yi)

}N
i=1, we aim to learn a metric (projection) set

{Ps}Ss=1 for the multiple sensors, where Ps is the projection
matrix for the s-th sensor. Learning the metric in such a
heterogeneous way jointly, we can adapt the metric to each

sensor more suitably and improve the robustness of final joint
classification. Following the same spirit as LMNN, we propose
the following ‘pull’ and ‘push’ energy terms for multiple
sensors:

Epull({Ps}Ss=1) =
∑

i,j i

S
∑

s=1

∥

∥Ps(xs
i − xs

j)
∥

∥

2
. (7)

Epush({Ps}Ss=1) =
∑

i,j i

∑

l

(1− yil)
[

1 +
S

∑

s=1

∥

∥Ps(xs
i − xs

j)
∥

∥

2

−
S

∑

s=1

‖Ps(xs
i − xs

l )‖
2
]

+
.

(8)

The hinge loss [·]+ used in (8) couples the multiple metrics
and enables them to be learned jointly from the training data,
thus fusing the information from all the sensors by learning
appropriate metrics adapted to each sensor. Using these energy
terms, the total energy is defined as:

E
(

{Ps}Ss=1
)

= (1− λ)Epull
(

{Ps}Ss=1
)

+ λEpush
(

{Ps}Ss=1
)

. (9)

Again, (9) is not convex. To solve it effectively, we refor-
mulate it into a SDP problem following LMNN:

{Ms} = arg min
{Ms}

(1− λ)
∑

i,j i

S
∑

s=1

(xs
i − xs

j)
>Ms(xs

i − xs
j)

+ λ
∑

i,j i

∑

l

(1− yil)εijl

s.t.
S

∑

s=1

{

(xs
i − xs

l )
>Ms(xs

i − xs
l )

− (xs
i − xs

j)
>Ms(xs

i − xs
j)

}

≥ 1− εijl

εijl ≥ 0, Ms � 0,

(10)

where Ms = PsPs>. By converting the original problem
into a SDP problem, it can be easily solved via standard SDP
solvers. The detailed algorithm for solving this problem is
presented in the next section.

After the metric set {Ms}Ss=1 is learnt, we can proceed to
perform classification by fusing the information from all the
sensors. Given a multi-sensor test sample xt = {xs

t}Ss=1, we
can classify it using a KNN classifier with the learned met-
rics. Alternatively, the following energy based classification
method can be used for better classification performance [21].
Denoting the distance between the multi-sensor test sample xt

and a multi-sensor training sample xi = {xs
i }

S
s=1 as

DM(xt,xi) =
S

∑

s=1

dMs(xs
t ,x

s
i ), (11)



the energy based classification can be achieved via [21]:

ŷt = arg min
yt

(1 − λ)
∑

j t

DM(xt,xj)

+ λ
∑

j t,l

(1− ytl)
[

1 + DM(xt,xj)−DM(xt,xl)
]

+

+ λ
∑

i,j i

(1− yit)
[

1 + DM(xi,xj)−DM(xi,xt)
]

+
.

(12)

The first term in (12) represents the accumulated energy for
the k target neighbors of xt; The second term accumulates the
hinge loss over all the imposters for xt; the third term rep-
resents the accumulated energy for different labeled samples
whose neighbor perimeters are invaded by xt, i.e., taking xt

as their imposter.

IV. EFFICIENT HETEROGENEOUS MULTI-METRIC
LEARNING ALGORITHM

After we get the SDP formulation (10), a general purpose
SDP solver can be used to solve the multi-metric learning
problem. However, as the general purpose solvers do not take
the special structures of the problem into consideration, they
do not scale well in the number of constraints. Following [22],
we also exploit the fact that most of the constraints are not
active, i.e., most of slack variables {εijl} never have positive
values. Therefore, by using only the sparse active constraints,
a great speedup can be achieved. An efficient algorithm for
HMML is developed in this section. The main algorithm
includes two key steps: (1) gradient descent of the metrics
and (2) projection onto the SDP cone. We address each of
these aspects in the following.

1) Gradient Computation: By using the notation Cs
ij =

(xs
i − xs

j)(xs
i − xs

j)>. At the t-th iteration, we have
Dt

M(xi,xj) =
∑S

s=1 tr(Ms
tC

s
ij). Therefore, we can refor-

mulate the energy function (9) as:

E({Ms
t}

S
s=1) = (1− λ)

∑

i,j i

∑

s

tr(Ms
tC

s
ij) (13)

+λ
∑

i,j i

∑

l

(1−yil)
[

1+
∑

s

(

tr(Ms
tC

s
ij)−tr(Ms

tC
s
il)

)

]

+
.

We define a set of triples Nt as the set of indices (i, j, l) ∈
Nt if and only if (i, j, l) triggers the hinge loss in (13), which
is also referred to as active set in the following. The gradient
of (13) with respect to Ms

t is:

Gs
t =

∂E({Ms
t}Ss=1)

∂Ms
t

= (1− λ)
∑

i,j i

Cs
ij +λ

∑

(i,j,l)∈Nt

(Cs
ij −Cs

il).
(14)

Note that the updating of Gs requires the computation of the
outer product in Cs

ij . This updating step may be computa-
tionally expensive. Thus we use an active updating scheme

following [22]:

Gs
t+1 = Gs

t − λ
∑

(i,j,l)∈Nt−Nt+1

(Cs
ij −Cs

il)

+ λ
∑

(i,j,l)∈Nt+1−Nt

(Cs
ij −Cs

il).
(15)

This means that to get an updated estimation for the next
estimation of the gradient corresponding to sensor s, we
subtract the contribution of the inactive samples (Nt −Nt+1,
i.e., the samples contained in Nt but not in Nt+1) from
the previous gradient estimation and add the contribution of
the newly activated samples (Nt+1 − Nt, i.e., the samples
contained in Nt+1 but not in Nt) from sensor s. In the
presence of multiple sensors, the active sample set Nt has to
be updated based on the data from all the sensors, thus fusing
them effectively and ensuring a more effective updating step
for all the metrics. This step exploits the correlations among
the potentially heterogeneous data from the multiple sensors
and can improve the performance of the algorithm, both in
terms of classification accuracy and robustness, as verified by
the experimental results in the next section.

2) Projection: The minimization of (9) or (10) must enforce
that the metric Ms

t should be positive semi-definite. This
is approached by projecting the current estimation onto the
cone of all positive semidefinite matrices S+. For the current
estimation of the metric Ms

t for sensor s, we perform eigen-
decomposition:

Ms
t = V∆V>, (16)

where V consists of the eigenvectors of Ms
t and ∆ is a diag-

onal matrix with corresponding eigen-values. The projection
of Ms

t onto the SDP cone is implemented as:

PS(Ms
t ) = V∆+V>, (17)

where ∆+ = max(∆, 0).
Using the derived gradient updating equation (15) and the

SDP projection (17), the multi-metric learning procedure can
be implemented by taking a gradient descent step at each
iteration and then projecting back onto the SDP cone for each
sensor specific metric based on the active set updated using all
the sensors, thus fusing the information from multiple sensors.
The overall learning procedure is summarized in Algorithm 1.

V. MULTI-SENSOR ACOUSTIC SIGNAL FUSION FOR EVENT

CLASSIFICATION

In this section, we carry out experiments on a number of
real acoustic datasets and compare the results with several
conventional classification methods to verify the effective-
ness of the proposed method. Specifically, we first show
an illustrative example to demonstrate some properties of
the proposed method. We then examine the advantage of
learning multiple metrics jointly as proposed. The merits of
using a joint multi-metric in multi-sensor classification is then
examined. Furthermore, we test the proposed method on a 2-
class classification problem, and then on a 4-class classification



Algorithm 1: Heterogeneous Multi-Metric Learning
(HMML).
Input: multi-sensor data training set {({xs

i}
S
s=1, yi)}Ni=1,

number of nearest neighbor k, gradient step
length α, weight λ

Output: multi-sensor metric set {Ms}Ss=1
Initialize: {Ms}Ss=1 = I, Gs

0 ← (1− λ)
∑

i,j i C
s
ij ,

t← 0, Nt = {};
while convergence condition false do

Update the active set Nt+1 by collecting the triplets
(i, j, l) with j  i that incur the hinge loss in (13);
for s = 1, 2, · · · , S do

% compute the gradient to the metric for sensor s

Gs
t+1 ← Gs

t − λ
∑

(i,j,l)∈Nt−Nt+1
(Cs

ij −Cs
il) +

λ
∑

(i,j,l)∈Nt+1−Nt
(Cs

ij −Cs
il);

% take gradient step and project onto SDP cone for the
metric of the s-th sensor
Ms

t+1 ← P(Ms
t − αGs

t+1);
end
t← t + 1

end
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Figure 1. Illustration of multiple sensors and the multi-sensor data.
(a) UTAMS acoustic sensor array. Each array has 4 acoustic sensors, col-
lecting multiple acoustic signals of the same physical event simultaneously.
(b) acoustic signals from the 4 acoustic sensors for a Rocket Launch event
collected by a UTAMS.

problem. To examine the effects caused by different number of
training samples, we also carry out experiments under different
training ratios. Finally, to evaluate the effects of physical sites
on classification, we carry out experiments with multi-sensor
data collected from different sites for training and testing.

Data Description: The multi-sensor transient acoustic data
is collected for launch and impact of different weapons
(mortar and rocket) using the Unattended Transient Acoustic
MASINT System (UTAMS) developed by the U.S. Army
Research Laboratory as shown in Figure 1. For each event,
a UTAMS measures the signal from a launch/impact event
using 4 acoustic sensors simultaneously, where the sampling
rate is 1001.6 Hz. Totally, we have 4 datasets: CRAM04,
CRAM05, CRAM06 which were collected on different years,
and another dataset called Foreign which contains acoustic
signals of foreign weapons [16]. Among these 4 datasets,
CRAM05 and Foreign datasets consist of 4 subsets collected
by UTAMS sensors deployed at 4 different physical sites.

Segmentation: The event can occur at arbitrary location of
the raw acoustic signal. We first segment the raw signal
with spectral maximum detection [7] and then extract the
appropriate features from those segmented signals. In our
experiments, we take a segment with 1024 sampling points.
Feature Extraction: We use Cepstral features [3] for clas-
sification, which have been proved to be effective in speech
and acoustic signal classification. We discard the first Cepstral
coefficient and keep the following 50 Cepstral coefficients.

To evaluate the effectiveness of the proposed method, we
compare the results with different classical algorithms includ-
ing sparse linear multinomial Logistic Regression [1], [19]
and Linear Support Vector Machine (SVM) [1], which runs
in two modes in our experiments: (1) treating each sensor
signal separately (SVM); (2) concatenating all the signals
from different sensors (CSVM). One-vs-all scheme is used
for SVM in the case of multi-class classification. To show
the improvement by learning the metric, we also compare the
results with the classification results with model (12) using
Euclidean metric, which is denoted as KNN in the sequel.

A. Heterogeneous Multi-Metric Learning: An Example

We first illustrate some features of the proposed HMML
algorithm on a 2-class classification problem with 4 acoustic
sensors using the CRAM04 dataset. The 2-class classification
problem is defined as discriminating between different event
types (launch/impact) of a specific weapon (mortar). We first
examine the effect of the number of nearest neighbor k on
the classification accuracy. We carry out experiments under
different number of nearest neighbors: k ∈ {3, 5, 7, 9} with
training ratio r = 0.5 (the ratio of the number training samples
with respect to that of the whole dataset) and summarize the
results in Table I. As can be seen from Table I, the proposed
HMML method outperforms the other methods under different
number of nearest neighbors. Note that using KNN method
directly gives results worse than those of SVM. However,
after learning multiple metrics using the proposed method, a
large improvement in the classification accuracy over KNN
is gained. The proposed HMML method performs better than
SVM as well as CSVM under different number of nearest
neighbors. Note that the proposed method is also robust to
the number of nearest neighbor k, as shown in Table I. We
set k = 3 in the following experiments unless otherwise
specified. The 4 metrics (induced by the projection operation)
learned for each acoustic sensor via the proposed method
are shown in Figure 2. As can be seen from Figure 2, the
4 learned metrics are with some similar diagonal patterns,
due to the joint learning process. However, as can be noticed
from Figure 2, these 4 learned metrics as adapted to each
sensor are not exactly the same in nature, although they are all
learned for acoustic sensors, which implies that the 4 acoustic
sensors may have different operating conditions and contribute
differently to classification. The metrics learned for sensor 1
and sensor 3 (sensor 2 and sensor 4) are similar to each other,
indicating potentially similar operating conditions for those
sensors. Some of the learned metrics have different property
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Figure 2. Illustration of the learned metrics
{

Ms
}4

s=1
for the 4 acoustic sensors for 2 class Mortar problem (4 sensors).

with each other, indicating that even though the sensors are
all acoustic sensors, thus homogenous, the learned metrics
which are adapted to each sensor can be heterogeneous. By
learning such a heterogeneous metric set combining the cues
from all the sensors, we can learn multiple heterogeneous
metrics adapted to each sensor with improved classification
performance via the joint learning process. Therefore, the
proposed HMML algorithm is more robust and flexible to the
sensor fusion classification task.

Table I
CLASSIFICATION ACCURACY FOR WITH INCREASING NUMBER OF

NEAREST NEIGHBORS k (2-CLASS MORTAR PROBLEM USING CRAM04
DATASET, S = 4, r = 0.5).

k 3 5 7 9
Logistic 0.7778 0.7778 0.7778 0.7778

SVM 0.8073 0.8073 0.8073 0.8073
CSVM 0.8173 0.8173 0.8173 0.8173
KNN 0.6808 0.6840 0.6821 0.6821

HMML 0.8673 0.8644 0.8644 0.8490

B. The Merits of Joint Learning of Multiple Metrics

In this subsection, we conduct several experiments to verify
the advantages of the proposed joint approach for learning
multiple metrics. For comparison, we also learn the metrics
with (i) Separate Metric Learning (SML): learning a metric
for each sensor separately; (ii) Concatenated Metric Learning
(CML): learning the metric using data formed by concatenat-
ing the data from multiple sensors. The classification results
under training ratio r = 0.5 for two class mortar problem
with different number of sensors (S ∈ {1, 2, 3, 4}) using
CRAM04 dataset are shown in Table II. As can be seen
from Table II, all the three metric learning methods (SML,
CML and HMML) can substantially improve the classification
performance over the method without metric learning (KNN).
However, by learning the multiple metrics jointly using the
proposed HMML method, we can achieve better classification
accuracy than the method of learning metrics separately for
each sensor (SML) and the method of concatenating the data
(CML). The learned metrics using different methods are shown
in Figure 3. As can be seen from this figure, the metrics learned
using different methods are very different. Although CML can
improve the classification accuracy over KNN by a notable
amount, by concatenating the data and learn the corresponding
metric in that high-dimensional space, the dimensionality of
the learning task has been increased by a large number, which

poses great challenge to the learning algorithm. Moreover,
the computational demand is also increased to learn a full
and dense metric matrix in the enlarged data space. By
learning one metric for each sensor separately using SML, the
learning problem suffers less from the curse-of-dimensionality
and is also less demanding in computation, while achieving
similar performance with CML, as shown in Table II. The
problem with SML is that it totally overlooks the correlations
among the data from multiple sensors, therefore it can not
exploit these correlations during metric learning to improve
its performance, thus is not the most effective scheme for
sensor fusion (see Figure 3 (b)). Using the proposed HMML
method to learn the metric jointly, we can enjoy computational
efficiency while exploiting the correlations among the data
from multiple sensors. Thus obtaining a metric set that is more
discriminative in classification and improving the classification
accuracy over SML and CML by a large margin, as shown in
Table II. The metrics learned using proposed HMML method
are shown in Figure 3 (c).

Table II
COMPARISON OF JOINT AND SEPARATE METRIC LEARNING (2-CLASS

MORTAR PROBLEM USING CRAM04 DATASET, k = 3, r = 0.5).

Number of Sensors S 1 2 3 4
KNN 0.6820 0.6817 0.6808 0.6837
SML 0.8170 0.7958 0.8131 0.8025
CML 0.8170 0.7987 0.8039 0.8183

HMML 0.8170 0.8600 0.8644 0.8673

C. The Merits of Using Multiple Sensors

In this subsection, we examine the effects of fusing data
from multiple sensors on classification compared with using
only data from a single sensor. We again use the two class mor-
tar problem on the CRAM04 dataset as an example. We vary
the number of sensors within the range S ∈ {1, 2, 3, 4} and
carry out classification experiments using different algorithms
with training ratio r = 0.5. For Logistic regression and SVM,
they are performed on each sensor separately and the average
performances are reported. For CSVM, concatenated data from
all the sensors are used for classification. The experimental
results are presented in Table III and also graphically depicted
in Figure 4. As can be seen from these results, the classi-
fication accuracy increase as the number of sensor increase
in general. The proposed HMML method is comparable to
other methods in the case of using single sensor (S = 1)
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Figure 3. Comparison of the metrics learned via different approaches (2-class Mortar problem using CRAM04 dataset with 2 sensors): (a) concatenating
the data (b) separately for each sensor (c) jointly for all the sensors.
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Figure 4. Accuracy curves for different algorithms with increasing number
of sensors S (2-class Mortar problem using CRAM04 dataset).

for classification. In the case of multiple sensors (S ≥ 2), our
HMML method outperforms all the other methods by a notable
margin. Specifically, with the learned metric, HMML improves
the classification accuracy signaficantly over KNN, which uses
Euclidean metric for classification.

Table III
CLASSIFICATION ACCURACY USING DATA FROM DIFFERENT NUMBER OF

SENSORS (2-CLASS MORTAR PROBLEM USING CRAM04 DATASET,
k = 3, r = 0.5).

Number of Sensors S 1 2 3 4
Logistic 0.8209 0.8336 0.8301 0.8307

SVM 0.8008 0.8063 0.8106 0.8111
CSVM 0.8008 0.8217 0.8211 0.8279
KNN 0.6820 0.6817 0.6808 0.6837

HMML 0.8170 0.8600 0.8644 0.8673

D. Two Class Event Classification

In this experiment, we focus on the classification problem
between launch and impact for a single kind of weapon
(mortar) using all the 4 datasets. We randomly split each
dataset into two subsets for training and testing, with training
ratio r = 0.5. We run the experiment 5 times and summarize
the average performance in Table IV for different datasets.
As can be seen from comparison, HMML performs better
than Logistic regression or linear SVM and improves the
performance over KNN significantly, which clearly demon-
strates the effectiveness of the proposed multi-sensor metric
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Figure 5. Accuracy curves for different algorithms with increasing training
ratio r (4-class problem using CRAM04 dataset).

Table IV
CLASSIFICATION ACCURACY FOR 2-CLASS MORTAR PROBLEM

(S = 4, k = 3, r = 0.5).

Method 04 05 06 Foreign Average
Logistic 0.7778 0.8069 0.7183 0.6857 0.7472

SVM 0.8073 0.7991 0.7917 0.7693 0.7919
CSVM 0.8173 0.8448 0.7938 0.8000 0.8140
KNN 0.6808 0.8241 0.6949 0.7800 0.7450

HMML 0.8673 0.8621 0.8525 0.8240 0.8515

learning method. Moreover, it is noticed that for KNN, its
performance varies a lot from one dataset to another dataset,
while the proposed HMML method performs equally on
different datasets, which implies its robustness and potential
applicability to real-world problems.

Table V
CLASSIFICATION ACCURACY FOR 4-CLASS PROBLEM

(S = 4, k = 3, r = 0.5).

Method 04 05 06 Foreign Average
Logistic 0.7440 0.7234 0.6882 0.7367 0.7231

SVM 0.7410 0.7227 0.6860 0.7474 0.7243
CSVM 0.7487 0.7375 0.6945 0.7169 0.7244
KNN 0.6204 0.7188 0.6236 0.7456 0.6771

HMML 0.8014 0.7313 0.7284 0.7928 0.7635

E. Four Class Event Classification

To further verify the effectiveness of the proposed method,
we test our algorithm on a 4-class classification problem,
where we want to make decision on whether the event is



Table VI
CLASSIFICATION ACCURACY FOR 4-CLASS CLASSIFICATION WITH TRAINING AND TESTING ON DATA MEASURED AT DIFFERENT PHYSICAL SITES

(S = 4, k = 3).

Method CRAM05 Foreign AverageSite 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4
Logistic 0.4605 0.5577 0.6750 0.6172 0.6797 0.6829 0.7314 0.7109 0.6394

SVM 0.4408 0.5577 0.6583 0.6328 0.6901 0.7134 0.8005 0.6652 0.6449
CSVM 0.5526 0.6538 0.6667 0.4688 0.7292 0.7073 0.7766 0.7043 0.6574
KNN 0.4737 0.8462 0.5333 0.6250 0.5104 0.4146 0.5000 0.6348 0.5673

HMML 0.5789 0.8846 0.8000 0.7500 0.7917 0.7805 0.7766 0.7391 0.7627

launch or impact and whether the weapon is mortar or rocket,
which is much more challenging. We generate training and
testing datasets by random sampling each dataset with training
ratio r = 0.5. We repeat the experiment 5 times and report
the average performance for each dataset as well as the
overall average classification accuracy in Table V. We can
see again that the proposed HMML method performs better
than all the other methods and outperforms KNN by a notable
margin. Also, our HMML method outperforms the other
conventional classifiers on average. We also examine the the
performance of different algorithms under different training
ratios r = {0.1, 0.3, 0.5, 0.7}. The results for CRAM04 dataset
are shown in Figure 5. It is clear that HMML outperforms the
other methods under different training ratios.

F. Considering the Effects of Sensor Sites
In this experiment, to investigate the classification perfor-

mance using data captured by sensors at different physical
sites, we generate training and testing dataset according to
the physical sites where the UTAMS sensors are deployed.
Specifically, the CRAM05 and Foreign datasets contain sub-
sets collected from 4 different sites. We keep all the data from
one site for testing and data from all the other sites for training
for each dataset. The classification results are summarized in
Table VI. As can be seen from this table that the proposed
method performs the best on average. We can also see from
Table VI that the proposed HMML method is more robust to
sensors’ site locations, which indicates it’s potential use for
real-world applications.

VI. CONCLUSION

In this paper, we have developed an effective method to
jointly learn a set of heterogeneous metrics optimized for
each sensor by using a multi-sensor training data in order to
achieve fusion-based joint classification. The proposed method
generalizes the LMNN framework which is a state-of-the-
art single metric learning method to the setting of learning
multiple metrics adapted to multiple sensors with potentially
heterogeneous properties. Extensive experiments on real-world
multi-sensor datasets demonstrate that the proposed method is
very effective for multi-sensor fusion based classification when
compared with the conventional schemes.
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